Research and development of SCR technology using low speed engine

JAPAN

Objective & Outline

 Laboratory test of exhaust gas denitration with low-speed rotation engine was conducted. In this test, Urea and Ammonia was used as reductant.

Participants of this project:

- Mitsubishi Heavy Industries
- Tokyo University of Marine Science and Technology
- National Maritime Research Institute
- Akasaka Diesel Limited
- · Sakai Chemical Industry Co., Ltd.

Test Rig of SCR System

- Denitration Equipment: (Line A, B,C,D) Length 165mm, Width 165mm, Height 4490mm
- •Soot Blower: Air Mass Flow of 6.8m³N/min for each catalyst
- Heater : 200V × 3φ、60Hz、15kW
- Reductant Pump:
 Diaphragm fixed quantity type,
 25 milliliter per minute, 0.3MPaG

SCR developments; Test result (Lab test)

SV number set at 6500(1/h) in this laboratory test.

SCR Performance

- Higher denitration performance was observed at higher exhaust temperature.
- *As reductant, Urea has slightly lower performance than that of Ammonia.
- No nozzle blockage and sediment such as cyanuric acid on exhaust gas pipe and catalyst was observed during the laboratory test.
- At the exhaust gas temperature of 300 degrees Celsius, no decline of denitration performance was observed.
- At the exhaust gas temperature of 250-280 degrees Celsius, slight dust adherence on catalyst was observed, and there was little decline in denitration performance.
- •At the exhaust gas temperature of 230 degrees Celsius, adherence of dust and ammonia on catalyst was observed, and decline of denitration performance was observed.